On appelle espace de Cantor l'espace produit
Cela fournit en particulier un moyen commode pour compactifier les espaces métrisables à base dénombrable totalement discontinus. On en déduit que tout espace mesurable dénombrablement engendré et séparé est isomorphe à une partie de K munie de la tribu induite par la tribu borélienne de K.
L'espace de Cantor est homéomorphe à l'ensemble de Cantor, mais il est équipé naturellement d'une distance ultramétrique analogue à celle sur NN dont on trouvera une description dans l'article " boule ". C'est aussi, en probabilité, l'espace canonique sur lequel on construit le jeu de pile ou face.
L'espace de Cantor K a la puissance du continu, et on démontre par exemple que les boréliens d'un espace métrisable compact ont la puissance du continu dès qu'ils sont non-dénombrables en prouvant qu'ils contiennent un sous-espace homéomorphe à K.