Depuis les expériences de Galilée, on observe que dans un lieu donné tous les corps libres chutent en subissant la même accélération verticale. Ce phénomène est appelé pesanteur et est dû à la gravitation. À la surface de la terre, l'accélération de la pesanteur vaut approximativement 9,81 m s-2.
Un objet de masse m dans un lieu où l'accélération de la pesanteur vaut g, apparaît soumit à une force verticale, appelée poids de l'objet : P = mg.
En 1903, on a défini le kilogramme-force comme unité de mesure force. C'était le poids d'une masse de 1 kilogramme en un lieu où l'accélération de la gravité valait gn = 9,80665 m s-2, l’accélération de la gravité standard.
Le kilogramme-force est une unité obsolète, valant par définition 9,80665 Newton.
La première description quantitative de la pesanteur a été donnée par la loi universelle de la gravitation de Newton. La pesanteur à la distance R du centre d'un astre sphérique isolé formé de couches homogènes, et de masse totale M est dirigée vers le centre de l'astre et vaut
La théorie de la relativité générale d'Einstein décrit comment l'espace-temps se courbe à cause de la présence d'une densité de masse. Cette théorie contient la même constante universelle de gravitation G que la théorie de Newton et coïncide avec elle tant que la pesanteur reste faible. La théorie de Newton est suffisante pour prévoir le mouvement des satellites artificiels, mais la théorie d'Einstein est indispensable pour assurer la synchronisation des horloges des satellites GPS.
La Terre n'étant pas un astre sphérique isolé formé de couches homogènes, la pesanteur varie en fonction du lieu. La valeur de g = 9,81 n'est qu'approximative, entre autres du fait que la Terre n'est pas parfaitement sphérique et son rayon varie donc en fonction de la latitude, et de l'existence de forces axifuges. Ici on considère le rayon moyen de la Terre, qui vaut 6371 km.
Il est important de noter que même ainsi corrigée, l'accélération de la pesanteur ne suffit pas pour décrire le mouvement de la chute des corps à la surface de la terre.
Sur la Lune, la pesanteur est environ six fois moindre que sur Terre. Cela explique les bonds extraordinaires des astronautes du programme spatial américain Apollo, de la mission historique d'Apollo 11 (21 juillet 1969) à celle d'Apollo 17, Apollo 13 exclue. La prévision de ce phénomène a été popularisée dans l'album de Tintin On a marché sur la Lune…