Le baromètre est un instrument de mesure, utilisé en physique et en météorologie, qui sert à mesurer la pression atmosphérique. Il peut, de façon secondaire, servir d'altimètre pour déterminer, de manière approximative, l'altitude.
On distingue principalement :
À l'époque de Galilée, vers 1635, les ingénieurs et fontainiers de Florence sont chargés de construire de gigantesques installations hydrauliques dans les jardins des palais. Ils installent des pompes aspirantes mais découvrent avec stupéfaction qu'elles sont incapables d'élever l'eau de plus de 18 brasses, soit une dizaine de mètres. Galilée est sollicité mais il meurt en 1642 sans avoir eu le temps de résoudre ce problème : pourquoi ne peut-on pas aspirer l'eau au-delà d'une certaine hauteur ? On retrouva plus tard, dans ses notes, qu'il avait songé que l'air devait avoir un poids mais il n'en avait tiré aucune conclusion. L'idée que le liquide n'est pas aspiré par la pompe mais refoulé vers elle par l'effet d'une pression extérieure était en totale contradiction avec les dogmes admis à cette époque, qui voulaient que l'eau s'élève dans les tubes parce que la nature a horreur du vide.
Torricelli succède à Galilée comme physicien à la cour du Duc de Toscane. Reprenant les notes de son prédécesseur, il fait des expériences pour prouver que la pression atmosphérique est responsable de la montée de l'eau dans un espace vide. Pour éviter d'utiliser des colonnes d'eau d'une dizaine de mètres de hauteur, il a l'idée de faire des essais avec du mercure (hydrargyre, vif-argent…) qui est 13,6 fois plus dense. Il en remplit un long tube de verre, le bouche avec le doigt et le retourne sur un bassin rempli, lui aussi, de mercure. Il observe que le tube ne se vide que partiellement dans le bassin et qu'il y reste toujours une colonne de mercure d'environ 76 cm de hauteur, quel que soit l'enfoncement du tube dans le bassin. Il en déduit que la pression de l'air sur la surface du bassin contrebalance le poids de la colonne de mercure et que c'est elle qui permet de faire monter l'eau dans les pompes d'une hauteur d'environ 10 m, mais pas davantage. C'est ainsi que Torricelli invente le baromètre en 1643. Il remarque également que la hauteur du mercure dans le tube varie au cours du temps (celui qui s'écoule) et qu'une baisse précède généralement une période de mauvais temps (pluie).
Le réservoir ouvert n'est cependant pas très pratique si l'on veut transporter l'instrument. Diverses solutions sont imaginées, on réalise par exemple des réservoirs en cuir poreux fixés au tube et contenant une petite quantité de mercure. Sir Robert Boyle imagine de replier le tube barométrique vers le haut, ce qui donne le " tube siphon " encore utilisé aujourd'hui.
Le physicien français René Descartes (1596-1650) améliore le système de Torricelli en ajoutant une graduation en papier. Il est le premier à émettre l'idée que la pression atmosphérique doit diminuer avec l'altitude.
![]()
Torricelli inventant le baromètre à mercure, gravure figurant dans les livres de Camille Flammarion (1923)
|
![]()
Baromètre à siphon ordinaire
|
Le baromètre à cuvette est directement déduit du tube de Torricelli. Sans dispositif approprié, la lecture précise de la hauteur de la colonne de mercure n'est pas très facile. On a donc disposé au-dessus de la cuvette une vis à deux bouts pointus, l'inférieur venant juste tangenter la surface libre du métal dans la cuvette. À l'aide d'un cathétomètre, on vient mesurer la différence de hauteur entre la pointe supérieure de la vis et la surface libre dans le tube. La longueur de la vis, mesurée une fois pour toutes, est ajoutée à l'indication du cathétomètre et l'on obtient ainsi la hauteur de la colonne de mercure.
La pression atmosphérique contraint le mercure à monter dans le tube sur une colonne d'environ 76 cm de hauteur mais elle n'est pas suffisante pour combler le vide qui se forme dans la partie supérieure.
Dans les années 1640, l'une des questions les plus discutées parmi les savants est : l'air a-t-il un poids ?
Blaise Pascal, homme de science précoce mais aussi excellent expérimentateur, vient d'inventer à 22 ans une machine à calculer. Il refait l'expérience de Torricelli et pense, comme Descartes, que si l'air a un poids, alors le mercure doit monter moins haut dans le tube si l'on fait l'expérience en altitude. C'est bien ce qu'il vérifie, mais avec une précision trop faible, au sommet de la Tour Saint-Jacques à Paris (52 m). Grâce à son beau-frère qui habite au pied du puy de Dôme, le 19 septembre 1648, il refait l'expérience à diverses altitudes et constate qu'en effet, la hauteur du mercure diminue bien au fur et à mesure que l'on s'élève.
Le mot " baromètre " apparaît quelques années plus tard, créé par le physicien et chimiste irlandais Robert Boyle (barometer, 1665-1666). Il est formé sur le grec baros (poids, pesanteur). Mais il faudra attendre le milieu du XIXe siècle pour que les constructeurs d'instruments, les opticiens, les horlogers, commencent à produire des baromètres, à des fins scientifiques d'abord, puis à des fins domestiques. À partir de 1870 les graduations s'accompagnent d'indications météorologiques (" beau temps ", " variable "…). La dénomination " baromètre " ne s'impose en France qu'après la publication en 1676 de l'Essai sur la nature de l'air par Edme Mariotte.
Plus tard, on donnera le nom de pascal (sans majuscule) à l'unité internationale de pression, qui vaut un newton par mètre carré.
Le hasard peut amener à une découverte. En 1675, l'abbé Picard, transportant de nuit un baromètre à mercure, fait une curieuse découverte. À chaque mouvement brusque du métal, une lueur bleuâtre illumine le tube. Ce phénomène est étudié entre autres par un élève de Robert Boyle, Francis Hauksbee. Naturellement, aucune explication satisfaisante n'est trouvée à l'époque mais c'est ainsi que débutent les premières recherches sur les décharges électriques dans les gaz raréfiés… On sait maintenant que le frottement du mercure sur le verre est la cause de cette luminescence.
Le tube de Torricelli, baptisé par la suite baromètre, est un tube en U lié à une graduation de référence permettant de mesurer la différence de niveau entre les deux surfaces libres du mercure.
Le baromètre à mercure présente de nombreux inconvénients :
Bien que l'origine en soit controversée, on attribue au physicien hollandais Christian Huygens un important perfectionnement du tube de Torricelli, en 1672. Un tube en U contient du mercure comme précédemment et une zone de vide du côté fermé, mais la branche ouverte contient un liquide non volatil de plus faible densité dont le niveau dépend de celui du mercure. Descartes avait déjà réalisé des appareils de cette sorte. En choisissant convenablement les sections des tubes, on peut ainsi obtenir une amplification de l'ordre de 10, ce qui rend la lecture beaucoup plus facile et précise. Cette technique permet en outre d'éviter l'oxydation lente du mercure par l'oxygène de l'air.
![]()
Principe du baromètre de Huygens
|
![]()
Baromètre de Hooke, vers 1660
|
Le premier baromètre à cadran a été construit en 1663 par l'astronome anglais Robert Hooke. Un flotteur reposant sur le mercure suit les variations du niveau et actionne une aiguille qui indique la pression sur un cadran. La lecture est plus facile et plus précise qu'avec le baromètre de Torricelli mais, selon Privat-Deschanel et Focillon, " le baromètre à cadran est toujours un appareil assez grossier, quel que soit le luxe de sa présentation ".
Dans les baromètres à siphon construits sur le modèle imaginé par Louis Joseph Gay-Lussac, la branche courte a la même section que la branche longue, dont elle est séparée par un tube très fin destiné à empêcher l'air de pénétrer dans la chambre à vide. L'ouverture O laisse passer l'air mais elle est suffisamment petite pour empêcher le mercure de sortir facilement. Bunten y a ajouté un réservoir de garde CD destiné à piéger les bulles d'air qui pourraient, par accident, franchir le siphon.
Le français Jean Fortin (1750-1831) réalisa un baromètre à mercure transportable qui porte son nom. Afin de diminuer le volume du mercure dans la cuvette inférieure et de faciliter la lecture, Fortin imagina, en collaboration avec le mécanicien Ernst, un système de vis et de membrane de cuir permettant d'amener la surface libre au niveau d'un repère de hauteur fixe par rapport au tube. Un curseur lié à celui-ci permet la mesure directe de la hauteur de la colonne barométrique. On notera la conception du trépied, dont les branches repliées constituent des protections pour le tube de verre.
C’est au XVIIIe siècle qu’apparurent les premiers baromètres de marine à mercure. Leur développement fut freiné par les marins eux-mêmes, très attachés aux méthodes ancestrales de prévision du temps.
L’amiral britannique Fitzroy eut l’idée, en 1858, d’équiper tous les ports de pêche d’un baromètre.
Selon un document de 1619, un Hollandais, Gijsbrecht de Donckere, aurait inventé un baromètre à eau. L'air enfermé dans une partie de l'appareil se dilate ou se contracte selon la pression qu'il subit, produisant une variation de niveau relativement importante dans le tube fin relié à l'air libre. Johann Wolfgang von Goethe, vers 1792-93, aurait réinventé un appareil de ce type, à partir des principes de Torricelli. Lorsque la pression atmosphérique augmente, le niveau du liquide dans le tube descend. Inversement, lorsque la pression baisse, il y a moins d'appui sur l'eau et le liquide monte.
Les indications des baromètres à eau sont évidemment très liées à la température, et on ne se sert plus de ces appareils qu'à des fins décoratives.
![]() |
![]() |
![]() |
![]() |
Le baromètre Eco-Celli est un instrument dont la précision peut être comparée avec celle d'un baromètre de Torricelli. Son fonctionnement est totalement différent puisqu'il ne contient pas de mercure. Comme les baromètres à eau, cet instrument mesure la pression atmosphérique grâce à la compressibilité d'un volume de gaz enfermé qui se comprime ou se détend en fonction de la pression atmosphérique. Le volume du gaz dépend également de la température ambiante et il faut donc faire une correction. Celle-ci est réalisée très simplement en déplaçant l'échelle d'un curseur jusqu'à ce que l'index métallique soit au même niveau que le liquide bleu du thermomètre. Par rapport à un baromètre à mercure simple, le baromètre Eco-Celli permet une amplification de 4 fois, ce qui rend la lecture plus précise et surtout plus facile.
Le baromètre inventé par le Britannique Alexandre Adie en 1818 est nettement plus petit qu'un baromètre de Torricelli. Il est composé de deux éléments, un tube en forme de U (liquide rouge) et un thermomètre (liquide bleu) qui sont mis en parallèle. Une baisse de pression fait monter le liquide rouge du baromètre et une hausse le fait descendre. Le thermomètre permet de faire les corrections nécessaires.
Le baromètre anéroïde fut mis au point par le Français Lucien Vidie qui en déposa le brevet en 1844 (en collaboration avec Antoine Redier, inventeur du réveille-matin). Les parois d'une capsule vide d'air, dite " capsule de Vidie " sont maintenues écartées par un ressort. La pression atmosphérique appuie plus ou moins sur la boîte (capsule) anéroïde et fait ainsi tourner l'aiguille sur le cadran, grâce à un mécanisme de précision.
L'idée a été reprise par Eugène Bourdon en 1849 qui utilisa la déformation que subit un tube aplati vide d'air sous l'effet des variations de la pression extérieure. " Ce joli baromètre de cabinet ne pourrait pas remplacer le baromètre à mercure dans les observations de précision : mais, associé à ce baromètre, il peut rendre de grands services dans les excursions scientifiques " (Privat-Deschanel et Focillon).
Le principe de cet appareil avait été proposé en 1700 par le savant allemand Gottfried Wilhelm Leibniz ; le grand mérite de Vidie a été de le transformer en un objet pratique et peu onéreux. Le baromètre anéroïde est moins précis que le baromètre à mercure mais il permet en contrepartie de fabriquer des instruments compacts, beaucoup plus robustes et facilement transportables, surtout en mer.
Le système le plus ancien de baromètre enregistreur fut inventé par l’Anglais Moreland en 1670 mais c'est la capsule de Vidie qui est le " moteur " de la plupart des appareils actuels. Pour obtenir un déplacement et des efforts plus importants on utilise un empilement de capsules, généralement cinq. Les baromètres enregistreurs sont encore appelés barographes. Beaucoup sont présentés comme des objets " de luxe " dans une boîte vitrée aux montants d'acajou ou d'autre bois précieux mais il existe aussi des modèles beaucoup plus rustiques. Dans les barographes plus récents, la capsule est remplacée par un capteur piézorésistif et le tambour par un écran LCD.
En 1989, Casio a mis sur le marché la première montre-bracelet munie d'une fonction baromètre, inaugurant une série de montres multi-fonctions destinées aux randonneurs (avec altimètre) et aux plongeurs (avec manomètre).
La pression atmosphérique peut être exprimée en millimètres de mercure (mm Hg) ou en utilisant les unités habituelles de pression. Plutôt que le millibar (mb), il vaut mieux utiliser l'hectopascal (hPa) ; ces deux unités sont strictement équivalentes mais la seconde est un multiple de l'unité légale.
La pression diminue lorsque l'on s'élève, pas de façon linéaire, mais de moins en moins vite. Elle dépend aussi du profil de température qui règne au-dessus du lieu où on la mesure. Dans les observations météorologiques, on indique généralement deux valeurs : la pression à la station, mesurée in situ par un baromètre bien étalonné, et la pression réduite au niveau de la mer ou PNM, c'est-à-dire celle qui régnerait théoriquement, au même endroit, à l'altitude zéro de référence (le niveau de la mer n'est pas très facile à définir…).
La formule ci-dessous permet d'évaluer la pression réduite. Elle a été établie pour une température atmosphérique de 288 kelvins, soit 15° Celsius. Si la température est sensiblement différente, la réduction comportera une erreur non négligeable. Voir à ce sujet l'article sur la pression atmosphérique.
pred = pression réduite au niveau de la mer [hPa]
h = altitude au-dessus du niveau de la mer [m]
Il est toujours utile d'avoir des ordres de grandeur. À basse altitude, si l'on monte de 10 m, la pression baisse d'environ 1,25 hPa.
Un baromètre, quel qu'il soit, donne toujours la pression qui correspond à l’altitude où il se trouve. La pression atmosphérique donnée par les stations météo est toujours ramenée au niveau de la mer, afin d’avoir un point de référence.
La pression réduite au niveau de la mer, ou PNM, se calcule grâce à la formule suivante :
p1 = pression réduite au niveau de la mer
p2 = pression de la station en hPa
z2 = altitude de la station en mètre
T = (T2 + T1) / 2 en kelvin
T1 = 288,15 – 0,0016 Z2 température moyenne au niveau de la mer ajustée à l’altitude
la température de l'atmosphère diminue de 6,5°C par km ou 0,0065°C par m
T2 = température moyenne de la station sur 12 h en kelvin ou (Tmax+Tmin)/2
g = 9,80665 accélération due à la gravité
R = 287,08 constante de l’air sec
R = R* / Ma
R* = constante des gaz parfaits = 8,314 J K-1 mole-1
Ma = masse moléculaire de l'air sec = 28,9644 g mole-1
e = 2,71828…
En gros, à basse altitude, la pression diminue de 1hPa quand on monte de 8,3 m ou augmente 1 hPa quand on descend de 8,3 m.
A un endroit donné, l'indication donnée par un baromètre varie continuellement, de façon très rapide sous l'action du vent, surtout s'il souffle en rafales, mais aussi à plus long terme (quelques minutes, quelques heures ou de façon quotidienne) sous l'effet d'autres causes liées à divers phénomènes météorologiques ou climatiques.
Il n'est généralement pas possible de faire une très bonne prévision à partir d'une simple lecture de baromètre en un lieu donné. Toutefois, il est bon de savoir que l'approche d'une dépression ou d'un creux barométrique se traduit par une tendance de pression à la baisse sur une période de l'ordre de 3 à 12 heures. La valeur et la rapidité de la baisse de pression sont des indicateurs valables de l'intensité de la perturbation atmosphérique qui s'approche.
En l'absence de prévisions météorologiques modernes, ou en supplément de celles-ci, un observateur avisé peut arriver à faire une prévision à court terme d'une certaine valeur en tenant compte de la climatologie locale, des vents, des nuages et de la tendance de pression.
Bien que plusieurs autres instruments de mesure (thermomètre, hygromètre, anémomètre, girouette, pour ne nommer qu'eux) aient eu un rôle à jouer dans la genèse scientifique de la météorologie, il est clair que le baromètre est d'une importance toute spéciale. Le baromètre mesure une propriété mécanique de l'atmosphère, la pression, qui, contrairement au vent, à la température, ou même à l'humidité, échappe généralement à nos sens. Dès son invention, les scientifiques ont soupçonné l'importance de la pression comme paramètre météorologique, mais les progrès menant à une compréhension réelle ont été lents. On a parfois donné à la lecture du baromètre une importance mal placée, fondée sur des observations empiriques d'une exactitude qui de nos jours paraît discutable.
En effet, jusqu'au début du XXe siècle, la mécanique atmosphérique était encore mal comprise. Le courant-jet, par exemple, est demeuré essentiellement insoupçonné jusque dans les années 1940. C'est dans cette période de la première moitié du siècle que des chercheurs tels que Vilhelm Bjerknes et Carl-Gustav Arvid Rossby ont donné à la météorologie à grande échelle le cadre conceptuel qu'on lui connaît aujourd'hui, fondé sur un solide formalisme de physique mathématique. C'est qu'il était difficile, avant la multiplication des liens de communications, de mesurer l'état de l'atmosphère à une échelle comparable à celle des grands systèmes météorologiques. Les scientifiques du XIXe siècle en étaient donc le plus souvent réduits à tenter de relier empiriquement les fluctuations locales de pression avec le caractère du temps et du vent.
Ainsi, en 1883, Privat-Deschanel et Focillon donnent les indications suivantes :
Ces remarques contiennent quelques éléments de vérité, mais ne sont pas appuyées par une compréhension suffisante des mécanismes sous-jacents. Par exemple, il est correct de dire que les grandes tempêtes sont précédées d'une baisse de pression mais la relation avec l'équateur n'est qu'une observation, incomprise, et finalement incorrecte à la lumière des connaissances actuelles.
De nos jours, le baromètre conserve une importance fondamentale parmi une batterie grandissante d'instruments. Les mesures de pression, de vitesse du vent, de température et d'humidité prises à la surface et en altitude sont communiquées partout dans le monde. Ces mesures prises in-situ ont bien sûr une grande valeur intrinsèque pour l'observation météo mais cette valeur est multipliée lorsqu'on considère qu'elles servent aussi à l'étalonnage et à la validation d'instruments de mesure à distance qui opèrent à partir de satellites, d'avions ou de la surface terrestre. Le baromètre joue ainsi un rôle fondamental dans l'explosion en cours du volume des données d'observation de la Terre par mesure à distance.
Une histoire célèbre raconte différentes manières de mesurer la hauteur d'un bâtiment avec un baromètre : en s'en servant comme masse pour un fil à plomb ou comme un pendule dont on mesurerait la fréquence propre, comme masse pour mesurer le temps de chute, comme marchandise pour soudoyer le gardien du bâtiment… La " réponse attendue " (mesure de la différence de pression entre le bas et le haut) n'étant citée qu'en dernier.
Cette histoire aurait en fait été publiée dans le Reader's Digest en 1958 et elle se serait transformée au fil du temps en une anecdote supposée réelle et attribuée à Niels Bohr, devenant ainsi une légende moderne (lien). On peut se demander si le recours à cette personne célèbre n'est pas une manière de transformer une anecdote amusante en un pamphlet contre la " rigidité de l'enseignement scolaire " opposée à la " créativité ".