Un L-System (ou système de Lindenmayer) est une grammaire formelle, permettant un procédé algorithmique, inventé en 1968 par le biologiste hongrois Aristid Lindenmayer qui consiste à modéliser le processus de développement et de prolifération de plantes ou de bactéries.
Basée sur une forme récursive de grammaire générative, cette grammaire a été approfondie et mise en œuvre graphiquement par Przemyslaw Prusinkiewicz dans les années 1980.
Au départ, Lindenmayer avait pensé ce système comme un langage formel qui permettait de décrire le développement d'organismes multicellulaires simples. À cette époque il travaillait sur les levures, les champignons et des algues. Mais l'informatique a permis d'exploiter ce système pour générer graphiquement des calculs de plantes très complexes.
Un L-System est un ensemble de règles et de symboles qui modélisent un processus de croissance d'êtres vivants comme des plantes ou des cellules. Le concept central des L-Systems est la notion de réécriture. La réécriture est une technique pour construire des objets complexes en remplaçant des parties d'un objet initial simple en utilisant des règles de réécriture.
Pour ce faire, les cellules sont modélisées à l'aide de symboles. À chaque génération, les cellules se divisent, i.e. un symbole est remplacé par un ou plusieurs autres symboles formant un mot.
Un L-System est une grammaire formelle qui comprend :
Un L-System est alors noté {V,S,ω,P}.
Voici le premier L-System d'Aristid Lindenmayer qui servait à décrire le développement d'une algue :
Notation :
Algue
{
Axiom A
A=AB
B=A
}
Algue est le nom du L-System. En premier on a l'axiome ω, puis chaque règle de P est à la ligne l'une de l'autre. A=AB
est à comprendre comme tout symbole A devient un " mot " AB à la génération suivante.
Voici le résultat sur six générations :
Notation :
Algue
{
Axiom A
A=B
B=AB
}
Voici le résultat sur six générations :
Si on compte le nombre de symboles à chaque génération, on obtient la suite de Fibonacci :
Cette chaîne de caractère est un mot insensé en soit, mais qui peut fort bien se prêter à une interprétation graphique, en deux ou trois dimensions. Pour illustrer la manière de construire une plante avec un L-System, imaginons que nous avons un crayon à la main et qu’elle se balade sur la feuille sous nos ordres : "monte d’un cran, puis tourne de 20° à gauche, déplace toi deux fois de un cran, mémorise ta position et avance encore d’un cran, lève-toi puis repose-toi sur la position mémorisée" et ainsi de suite... Il a donc fallu inventer des symboles variants ∈ V, ou constants ∈ S, pour permettre de guider cette main. Plusieurs d'entre eux ont été normalisés, ils font partie de ce qu'on appelle la "Turtle interpretation". Ce nom vient de la "tortue" du langage de programmation Logo qui fonctionne sur le même principe. En fait c'est cette tortue qui est votre main qui tient le crayon. Voici donc les signes couramment utilisés :
Pour être plus concret, les symboles appartenant à V sont des parties d'une plante, comme une branche ou une portion de branche tout simplement. Les symboles appartenant à S sont des ordres que l'on donne à notre main virtuelle qui dessine la plante, ils servent à déterminer une direction à prendre, tandis que les symboles de V dessinent dans cette direction.
Remarque : Les deux derniers symboles rappellent les fonctions pushMatrix() et popMatrix() d'OpenGl, ainsi on devine que c'est un environnement graphique qui se prêtera très bien au L-System. De plus la programmation orientée objet avec les pointeurs, tel que dans le langage C++, semble indiquée pour la modélisation d'une "chaîne cellulaire" qui évolue.
Courbe_de_Koch
{
angle 90
axiom F
F=+F−F−F+F
}
angle 90
détermine que l'on tourne de 90° avec les symboles + et -.
Voici le résultat sur trois générations :
F
F+F-F-F+F
F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F
F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F- F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F- F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F
Cette " turtle interpretation " peut être exploitée en trois dimensions grâce aux idées de Harold Abeson et Andrea diSessa dans leur ouvrage commun, " Turtle geometry : the computer as a medium for exploring mathematic ". L'orientation est représentée par trois vecteurs :
La rotation de la tortue se note alors :
Les symboles prennent maintenant la signification suivante :
Ce système est déterministe, i.e. qu'il n'offre qu'une seule évolution possible depuis l'axiome à la énième génération. Une cause engendre un effet, ce qui se traduit par : une variable ne peut subir qu'un seul type de transformation, toujours identique, donc une seule règle par variable. L'exemple ci-dessus était un DOL-System, il s'agit de la forme la plus simple de L-System.
Plante
{
angle 20
axiom X
X=F[+X]F[−X]+X
F=FF
}
angle 20
détermine de quel angle on tourne avec les symboles + et -.
Voici le résultat sur deux générations :
Comme son nom l'indique, ce système fait appel aux probabilités, il est aussi appelé système non-déterministe. Contrairement au DOL-System, il est possible de déterminer plusieurs transformations pour un symbole. Chaque possibilité sera pondérée pour pouvoir donner priorité à certaines transformations par rapport à d'autres.
On pourrait étoffer l'exemple du DOL-System, on s'en contentera pour rester sur quelque chose de simple, même si ça n'aurait que peu d'intérêt graphiquement :
Plante_Stochastique
{
angle 20
axiom X
X=(0.2)F[++X]F[−X]+X
X=(0.8)F[+X]F[−X]+X
F=(1.0)FF
}
Voici un résultat possible sur deux générations :
Voici un autre résultat possible sur deux générations :
Il y a 2²=4 possibilités possibles sur deux générations.
(0.2)
, (0.8)
et (1.0)
représentent les poids de chaque transformation possible de X et de F.
Les deux systèmes précédents (des OL-Systems) ne peuvent pas simuler l'interaction de parties d'une plante car ils sont context-free, i.e. chaque partie se développe indépendamment des autres parties. Un L-System context-sensitive résoud ce problème en prenant en compte ce qui précéde ou succède à une partie, c’est-à-dire un symbole. Un tel système est appelé IL-System ou encore (k,l)-System, le contexte de gauche est un "mot" de longueur k et celui de droite un "mot" de longueur l. Pour expliquer la manière dont se lisent les regles voici deux exemples :
Ce L-System simule la propagation d'un signal acropète dans une structure de branches qui ne se développe pas
A est une branche qui n'a pas encore reçu le signal, et B en est une qui l'a reçu. La règle se comprend ainsi : si un symbole A est précédé d'un symbole B, alors ce A devient un B à la génération suivante.
Voici la propagation du signal sur trois générations, sachant que les signes + et - seront ignorés dans la prise en compte des règles :
On constate que peu à peu, chaque branche est atteinte par le signal acropète qui permet au fleurs les plus hautes de s'ouvrir. Remarquez bien qu'à chaque génération, deux nouvelles branches reçoivent le signal, en effet, puisque l'on sauvegarde la position, que l'on dessine A puis qu'on restitue la position et on redessine un A, cela signifie que ces deux A ont la même base, donc la même branche précède les deux.
Ce L-System simule la propagation d'un signal basipète dans une structure de branches qui ne se développe pas.
A est une branche qui n'a pas encore reçu le signal, et B en est une qui l'a reçu. La règle se comprend ainsi : si un symbole A est suivi d'un symbole B, alors ce A devient un B à la génération suivante.
Voici la propagation du signal sur trois générations, sachant que les signes + et - seront ignorés dans la prise en compte des règles :
On constate que peu à peu, chaque branche est atteinte par le signal basipète qui permet aux fleurs à l'inflorescence en ombrelle ou en capitule de fleurir de manière centrifuge.
Remarque : il est bien sûr possible d'écrire une règle dans le genre (B < A < B → B), ce qui signifie que si une branche A est entourée par des branches B alors elle deviendra une branche B à la prochaine génération. Il est aussi possible d'écrire plusieurs règles, pour plusieurs situations.