Dans un système de référence (référentiel) en rotation uniforme, les corps en mouvement, tels que vus par un observateur partageant le même référentiel, apparaissent sujets à une force d'inertie perpendiculaire à la direction de leur mouvement. Cette force est appelée force de Coriolis en l'honneur de l'ingénieur français Gaspard-Gustave Coriolis.
À la fin du XVIIIe siècle et au début du XIXe siècle, la mécanique connut de grands développements théoriques. En tant qu'ingénieur, Coriolis s'intéressait à rendre la mécanique théorique applicable dans la compréhension et le développement de machines industrielles. C'est dans son article Sur les équations du mouvement relatif des systèmes de corps (1835) que Coriolis décrivit mathématiquement la force qui devait porter son nom. Dans cet article, la force de Coriolis apparaît comme une composante supplémentaire à la force centrifuge, ressentie par un corps en mouvement relativement à un référentiel en rotation, comme cela pourrait se produire par exemple dans les rouages d'une machine.
L'argumentation de Coriolis était basée sur une analyse du travail et de l'énergie potentielle et cinétique dans les systèmes en rotation. De nos jours, la démonstration la plus utilisée pour enseigner la force de Coriolis utilise les outils de la cinématique.
Ce n'est qu'à la fin du XIXe siècle que cette force fit son apparition dans la littérature météorologique et océanographique. Le terme force de Coriolis apparut au début du XXe siècle.
En mécanique newtonienne, on qualifie la force de Coriolis de force fictive, ou inertielle, en vertu du fait qu'elle n'existe que parce que l'observateur se trouve dans un référentiel en rotation alors qu'aucune force ne s'exerce pour un observateur au repos ou en mouvement rectiligne uniforme (dit repère galiléen).
L'animation à droite nous montre donc la différence entre le point de vue d'un observateur immobile et celui d'un observateur qui se déplace avec un disque en rotation. Pour le premier, la bille ne fait que se déplacer avec une vitesse constante depuis le centre du disque vers sa bordure. Pour lui, il n'y a pas de force en jeu et la bille se déplace en ligne droite.
Pour le second (le point rouge), la bille se déplace le long d'un arc de cercle, vers sa gauche, changeant constamment de direction. Il faut donc une force pour expliquer ce déplacement. Cette pseudo-force est la force de Coriolis
On peut représenter
Cependant, on peut multiplier la vitesse angulaire Ω avec
Dans l'image du disque et de la bille vue précédemment, cette dernière glisse sans frottement et seule la force de Coriolis est présente dans le repère en rotation. Dans le cas du mouvement d'un corps à la surface de la Terre, ce dernier a son mouvement propre à la surface du globe. Il se déplace également dans l'espace, avec la rotation de la planète, en étant attiré par la gravité. Il subit donc en plus une autre force fictive dite force centrifuge. Les deux s'additionnent:
La force centrifuge et la force de Coriolis ne se manifestent donc que dans des référentiels en pivotement. Comme on l'a vu précédemment, la force de Coriolis dépend de la vitesse du corps en mouvement. La force centrifuge, en réalité la force axifuge, se défini elle comme
Voici un autre cas très simple, qui exige l'intervention de la force de Coriolis pour être interprété :
Soit deux masses, M et P, décrivant le même cercle à la même vitesse angulaire, dans le sens direct et dans le sens indirect.
La force de Coriolis permet l'interprétation de beaucoup de phénomènes à la surface de la Terre; par exemple le mouvement des masses d'air et des cyclones, la déviation de la trajectoire des projectiles à grande portée (cf Grosse Bertha), le changement du plan de mouvement d'un pendule tel que montré par Foucault dans son expérience du pendule de Foucault en 1851 au Panthéon de Paris, ainsi que la légère déviation vers l'est lors de la chute libre.
L'application la plus importance de la pseudo-force de Coriolis est sans conteste en météorologie et en océanographie. En effet, les mouvements à grande échelle de l'atmosphère terrestre sont le résultat de la différence de pression entre différentes régions de la couche atmosphérique mais sont assez lents pour que le déplacement dû à la rotation de la Terre influence la trajectoire d'une parcelle d'air. Considérons donc la circulation atmosphérique mais les mêmes remarques sont valides pour les mouvements des eaux dans les mers.
Le flux d'air dans une masse d'air au repos est naturellement entre les zones où la pression est plus haute vers celles où elles sont minimales. Si la Terre n'était pas en rotation, la pression d'air s'égaliserait donc rapidement et l'atmosphère devriendrait rapidement isotrope sans apport de chaleur. Par contre, avec le réchauffement différent aux pôles et à l'équateur qui maintient une différence de pression, on aurait une éternelle circulation entre ces deux endroits. Cette dernière circulation existe près de l'équateur où l'effet de Coriolis devient nul car Ω(t) et
Cependant, la Terre tourne et en utilisant la définition de la force de Coriolis dans un référenciel en rotation, on voit que cette dernière augmente à mesure que la vitesse obtenue par le gradient de pression augmente mais dans la direction perpendiculaire. Ceci donne une déviation vers la droite dans l'hémisphère nord (gauche dans celui du sud) d'une parcelle d'air en mouvement. Ainsi la circulation de l'air sera anti-horaire autour d'une dépression et horaire autour d'un anticyclone (hémisphère nord). Il s'agit là du vent géostrophique[1].
Dans la figure à droite, on voit comment cela se produit en prenant les quatre points cardinaux comme début de l'interaction des forces. Le gradient de pression (flèches bleues) amorce le déplacement de l'air mais la force de Coriolis (flèches rouges) le fait dévier vers la droite (flèches noires). Le gradient de pression s'ajuste en direction avec ce changement ainsi que la force de Coriolis ce qui fait changer continuellement la direction de notre parcelle. Rapidement, le gradient de pression et la force de Coriolis s'opposent et le déplacement de l'air se stabilise en suivant une trajectoire perpendiculaire au gradient et donc parallèle aux lignes d'équi-pression (isobares). En fait, à cause de la friction, de la force centrifuge et des différences de pression dans une région, l'équilibre n'est jamais vraiment atteint et la direction restera toujours légèrement vers le centre de basse pression (voir Spirale d'Ekman).
Les dépressions, aussi appelés cyclones, ne peuvent pas se former près de l'équateur où la composante horizontale de la force de Coriolis est nulle. La variation de la force de Coriolis donne donc différents régimes de circulation atmosphérique selon la latitude.
Une autre utilisation pratique de la force de Coriolis est le calcul de la trajectoire des projectiles dans l'atmosphère. Une fois qu'un obus est tiré ou qu'une fusée en vol sous-orbital a épuisé son carburant, sa trajectoire n'est contrôlée que par la gravité et les vents (quand il est dans l'atmosphère). Supposons maintenant qu'on enlève la déviation dûe au vent. Dans le repère en rotation qu'est la Terre, le sol se déplace par rapport à la trajectoire rectiligne que verrait un observateur immobile dans l'espace. Donc pour un observateur terrestre, il faut ajouter la force de Coriolis pour savoir où le projectile retombera au sol.
Dans la figure de droite, on montre la trajectoire qu'un corps parcourerait s'il n'y avait que la force de Coriolis qui agisse. Supposons que le corps se déplace à vitesse constante de l'équateur vers le pôle Nord à altitude constante du sol, il subit un déplacement vers la droite par Coriolis (hémisphère nord). Sa vitesse ne change pas mais sa direction courbe. Dans sa nouvelle trajectoire, la force de Coriolis se remet à angle droit et le fait courber encore plus. Finalement, il effectue un cercle complet en un temps donné qui dépend de sa vitesse (v) et de la latitude. Le rayon de ce cercle (R) est:
Pour une latitude autour de 45 degrés,
Par contre, dans le cas d'une parcelle d'air ou d'un volume d'eau en mouvement dans une zone où la pression est uniforme (vaste col de pression), cette trajectoire dite intertielle est possible. Avec une vitesse typique de 10 m/s pour l'air, le rayon est de 100 km alors qu'avec des vitesse de 0,1 m/s pour l'eau, on obtient un rayon de 1 km. Dans ces deux cas on obtiendrait des tourbillons tournant en sens inverse de celui de la circulation autour d'une dépression. Il faut se rappeler qu'il s'agit d'un cas où il n'y a pas de gradient de pression. De plus, comme
Jusqu'à présent, nous avions considéré des mouvements selon l'horizontal uniquement. Parce que la Terre n'est pas plate et que l'atmosphère a une certaine épaisseur, les mouvements ont généralement une composante verticale. La force de Coriolis ne s'exerce donc pas uniquement parallèlement à la surface de la planète mais également selon la verticale. On peut penser par exemple à une particule d'air en surface qui se dirigerait en direction d'une étoile dans le sens de rotation de la Terre. Comme cette dernière tourne, sa surface change de direction par rapport à cette oriention et la parcelle semble s'éloigner vers le haut d'où une pseudo-force l'attirant dans cette direction.
Cet effet est très faible car la force de Coriolis a peu de temps pour s'exercer avant que la parcelle d'air atteigne la limite supérieure ou inférieure de l'atmosphère mais influence certains objets comme les tirs balistiques vu plus haut. Si on regarde les effets selon la direction:
1) Contrairement à une croyance populaire, la force de Coriolis due à la rotation du globe terrestre est trop faible pour avoir le temps d'influer le sens de rotation de l'écoulement de l'eau dans un lavabo qui se vide. Comme l'ont montré Arsher Shapiro et Lloyd Trefethen[2], pour percevoir une telle influence, il est nécessaire d'observer une masse d'eau stabilisée dans un très grand bassin circulaire (d'un diamètre de l'ordre d'au moins plusieurs dizaines de kilomètres pour un effet en centimètres). Dans le siphon d'un lavabo, le sens de rotation de l'eau est dû à la géométrie du lavabo et aux microcourants d'eau créés lors de son remplissage (ou lors d'une agitation de l'eau).
Avec :
2) La rotation dans une tornade est le plus souvent anti-horaire mais ce n'est pas dû à Coriolis. Dans ce cas, la rotation est initée par la configuration des vents dans la couche d'air près du sol qui donne une rotation horizontale de l'air. Lorsque le fort courant ascendant d'un orage verticalise cette rotation et qu'elle se concentre, le sens est déjà déterminé. On est encore là dans un domaine où le mouvement de l'air est beaucoup trop rapide pour que l'effet de Coriolis n'ait le temps d'avoir un impact.
3) Dans le cas d'un tourbillon de poussières, l'initiation de la rotation se fait par une différence des vents horizontaux. On a alors un axe verticale de tourbillon créé où la force centrifuge est contrebalancée par celle de pression. La vitesse des particules est trop rapide et sur un trop petit rayon pour que la force de Coriolis ait le temps d'agir. Les observations ont montré que la rotation dans ces vortex sont statistiquement divisés également entre horaires et anti-horaires, quelque soit l'hémisphère.
4) La force de Coriolis ne dépend pas de la courbure de la Terre, seulement de sa rotation et de la latitude où on se trouve.
5) La terre étant une sphère, les cartes géographiques en deux dimensions sont nécessairement une projection (voir par exemple la projection de Mercator) qui donne une distortion de la surface terrestre. La trajectoire des missiles balistiques, ou des obus, est courbée lorsqu'on la trace sur une carte mais la courbe obtenue est une somme de l'effet de Coriolis, des vents et de la projection qui a servie à faire la carte. Or ces deux dernières sont en général plus importante que la déviation de Coriolis.