Transitivité (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

En mathématiques, la transitivité est une propriété éventuelle d'une relation binaire. Une relation binaire \mathcal{R} définie sur un ensemble E est transitive quand à chaque fois que l'on a trois éléments x, y et z de E tels que x et y sont en relation, ainsi que y et z, alors x et z sont en relation. Plus formellement :

\forall x, y, z \in E\left[(x \mathcal{R} y \and  y \mathcal{R} z) \implies x \mathcal{R} z\right] .

Si l'amitié était transitive, on pourrait affirmer " Tous les amis de mes amis sont mes amis."

On en déduit qu'une relation sur E n'est pas transitive si et seulement s'il existe un triplet d'éléments de E qui fournit un contre-exemple à la transitivité : x et y sont en relation, ainsi que y et z, mais pas x et z. Plus formellement :

\exists x, y, z \in E\left[x \mathcal{R} y \and  y \mathcal{R} z \and \lnot(x\mathcal{R}z)\right] .

On dit alors que la relation binaire \mathcal{R} est non-transitive. Cette propriété, qui est la simple négation de la transitivité, ne doit pas être confondue avec la propriété suivante :

\forall x, y, z \in E \left[(x \mathcal{R} y \and  y \mathcal{R} z) \implies\lnot(x \mathcal{R} z)\right] .

On dit parfois d'une telle relation qu'elle est anti-transitive (cette propriété est moins utile et moins courante que la transitivité, le vocabulaire n'est pas forcément bien établi). Remarquez que les propriétés de non-transitivité et d'anti-transitivité ne sont pas comparables (acune des deux n'entraîne l'autre), et qu'une relation, même non vide, peut très bien être transitive et anti-transitive (il suffit qu'il n'y ait pas de triplet (x, y z) vérifiant x R y et y R z).

Exemples

  • Les relations = , \geq et \leq sont parmi quelques unes des relations transitives les plus couramment utilisées. Si a = b et si b = c alors automatiquement a = c.
  • La relation de parallélisme est transitive : si une droite D est parallèle à D', elle-même parallèle à D", alors D est parallèle à D". Il en est de même pour toute relation d'équivalence.
  • De même, les relations d'ordre sont transitives. Par exemple, (a \leq b \and b \leq c) \implies a \leq c ou encore tout diviseur naturel d'un diviseur naturel de n divise n.
  • Ainsi, on dit de la relation de congruence qu'elle est transitive dans \mathbb N . Cela veut dire que si a \equiv b  (lien) et si b \equiv c  (lien) , alors a \equiv c  (lien) .

Exemple de non-transitivité

  • La relation \not= n'est pas transitive, c'est-à-dire a \not= b et b \not= c ne permet pas de dire que a \not= c .

Exemple d'anti-transitivité

  • La relation "est le père de" est anti-transitive : si (a est le père de b) et (b est le père de c), alors (a N'est PAS le père de c).
Page générée en 0.090 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise