Large Hadron Collider - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Tunnel du LHC avec tube contenant les électroaimants supraconducteurs.
Situation du LHC

Le Large Hadron Collider (LHC, ou Grand collisionneur de hadrons en français) est un accélérateur de particules mis en fonctionnement le 10 septembre 2008 et inauguré officiellement le 21 octobre 2008 au CERN. Situé à la frontière franco-suisse, c'est le plus puissant accélérateur de particules au monde construit à ce jour, dépassant en termes d'énergie le Tevatron aux États-Unis. Il est même présenté comme le plus grand dispositif expérimental jamais construit pour valider des théories physiques.

Le LHC a été construit dans le tunnel circulaire (26,659 km de circonférence) de son prédécesseur, le collisionneur LEP (Large Electron Positron). À la différence de ce dernier, ce sont des protons — de la famille des hadrons — qui sont accélérés pour produire des collisions, en lieu et place des électrons ou des positrons pour le LEP.

Ces protons seront accélérés jusqu'à une énergie de 7 TeV, soit près de 7 500 fois leur énergie de masse. L'énergie totale de deux protons incidents sera ainsi de 14 TeV. Le LHC sera également utilisé pour accélérer des ions lourds comme le plomb avec une énergie totale de collision de 1 150 TeV pour le noyau dans son ensemble soit un peu plus de 2,75 TeV par nucléon qu'il contient.

Six détecteurs, dont quatre de très grande taille, sont installés sur cet accélérateur, à savoir ATLAS, CMS, TOTEM, LHCb, ALICE et LHCf ().

Un diagramme de Feynman montrant une voie possible de génération d'un boson de Higgs au LHC. Ici deux quarks émettent des bosons W ou Z qui se combinent pour former un boson de Higgs neutre.

Objectifs

Les physiciens espèrent apporter des éléments de réponse à plusieurs questions concernant la physique des particules et la cosmologie à l’aide de ces détecteurs :

  • Le modèle standard décrit de façon remarquablement précise la physique des particules. Il prédit l'existence d'une particule, appelée boson de Higgs, dont la détection est un des objectifs prioritaires du LHC car il permettrait de tester la validité de certaines théories (telle que la théorie des cordes).
  • De nombreux arguments théoriques privilégient l'existence de ce que l'on appelle la supersymétrie, qui prédit que chaque type de particule connue possède un alter-ego appelé superpartenaire. La mise en évidence de la supersymétrie est le second enjeu du LHC.
  • De très nombreux modèles de supersymétrie existent. Si la supersymétrie est détectée, le LHC sera en mesure de faire le tri entre les modèles viables.
  • Les observations cosmologiques indiquent qu'une grande partie (96 %) de la masse de l'univers est sous forme de constituants inconnus en laboratoire. L'un de ces constituants, appelé, faute de mieux le connaître, la "matière noire", pourrait être mis en évidence au LHC.
  • Des modèles de physique des hautes énergies, notamment la théorie des cordes, prédisent l'existence de dimensions supplémentaires en sus des trois dimensions d'espace que nous connaissons. Certaines collisions réalisées au LHC pourraient indirectement les mettre en évidence, notamment par la formation de trous noirs microscopiques.
  • Il semble probable que matière et antimatière existaient en quantités égales lors du Big Bang. Par la suite, un phénomène très mal connu a vraisemblablement généré un léger surplus de matière sur l'antimatière (ce phénomène est appelé baryogénèse). Matière et antimatière se sont ensuite annihilées en quantités strictement égales, ne laissant au final que l'infime surplus de matière. Le LHC pourrait être en mesure de mieux expliquer ce processus.
  • Les noyaux atomiques sont constitués de protons et de neutrons, chacun étant composé d'entités plus élémentaires appelées quarks. Les quarks n'existent aujourd'hui pas isolément, mais uniquement par groupes de 2 ou 3 particules (3 dans le cas des neutrons et des protons). Cette propriété est appelée confinement des quarks. Selon toute vraisemblance, à très haute température, les quarks peuvent exister isolément. Le LHC tentera de mettre en évidence cette « transition de déconfinement », et les propriétés de ce nouvel état de la matière appelé plasma quark-gluon.
Page générée en 0.007 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise