Un disque protoplanétaire déchiré par ses trois étoiles centrales

Publié par Adrien le 09/09/2020 à 09:00
Source: ESO
Restez toujours informé: suivez-nous sur Google Actualités (icone ☆)

Une équipe d'astronomes vient pour la première fois de démontrer que des groupes d'étoiles sont capables d'altérer leur disque de formation planétaire, de le déformer et de le scinder en anneaux inclinés. Cette nouvelle étude suggère que les planètes exotiques, semblables à Tatooine dans Star Wars, sont susceptibles de se former au sein d'anneaux inclinés dans des disques courbés autour de leurs étoiles. Ces résultats ont été obtenus à partir d'observations menées au moyen du Very Large Télescope de l'Observatoire Européen Austral (le VLT de l'ESO) et du Vaste Réseau (sub-) Millimétrique de l'Atacama.


Notre Système Solaire est remarquablement plat, l'ensemble des planètes orbitant dans le même plan. Ceci n'est toutefois pas toujours le cas, notamment des disques protoplanétaires situés en périphérie d'étoiles multiples, tel l'objet de cette nouvelle étude: GW Orionis. Ce système, situé à quelque 1300 années-lumière de la Terre dans la constellation d'Orion, est composé de trois étoiles et d'un disque périphérique déformé, déchiré.

“Nos images révèlent le cas extrême d'un disque tout sauf plat, déformé et déchiré comme en témoigne la découverte d'un anneau incliné originaire du disque” souligne Stefan Klaus, professeur d'astrophysique à l'université d'Exeter au Royaume Uni, auteur principal de l'étude publiée ce jour au sein de la revue Science. L'anneau incliné se situe à l'intérieur du disque, non loin des trois étoiles.

En outre, ce nouveau travail de recherche révèle que l'anneau interne se compose de poussière à hauteur de 30 masses terrestres, ce qui devrait suffire à former de nouvelles planètes. “Toute planète formée au sein de l'anneau incliné sera caractérisée par une orbite fortement inclinée autour de l'étoile. Nous estimons être en mesure de découvrir à l'avenir de nombreuses planètes decrivant des orbites obliques, très éloignées, dans le cadre de campagnes d'imagerie planétaire, menées au moyen notamment de l'ELT”, l'Extremely Large Telescope de l'ESO qui entrera en fonction à la fin de cette décennie, précise Alexander Kreplin de l'université d'Exeter, par ailleurs membre de l'équipe. Puisque plus de la moitié des étoiles peuplant notre ciel sont nées avec un ou plusieurs compagnons, un nouveau champ d'investigation s'ouvre à nous: une population encore inconnue d'exoplanètes pourrait orbiter autour d'étoiles sur des trajectoires particulièrement inclinées et distantes.

Pour parvenir à ces conclusions, l'équipe a observé GW Orionis durant plus de 11 ans. Dès 2008, ils utilisèrent les instruments AMBER puis GRAVITY installés sur l'Interférometre du VLT de l'ESO au Chili, qui combine la lumière en provenance des différents télescopes composant le VLT, afin d'étudier la danse gravitationnelle des trois étoiles du système et de cartographier leurs orbites. '“Il nous est apparu que les trois étoiles n'orbitent pas dans le même plan, et que leurs orbites ne sont alignées, ni les unes par rapport aux autres, ni avec le disque”, précise Alison Young des Universités de Leicester et d'Exeter, par ailleurs membre de l'équipe.

L'équipe a également observé le système au moyen de l'instrument SPHERE installé sur le VLT de l'ESO et du réseau ALMA dont l'ESO est partenaire, dans le but d'imager l'anneau interne et de confirmer son inclinaison. L'instrument SPHERE de l'ESO leur a également permis d'apercevoir, pour la toute première fois, l'ombre que projette cet anneau sur le reste du disque. Ils en ont déduit la forme tridimensionnelle de l'anneau et du disque dans son ensemble.

L'équipe internationale, composée de chercheurs du Royaume-Uni, de Belgique, du Chili, de France et des États-Unis, a ensuite combiné ses observations exhaustives à des simulations numériques afin de comprendre ce qui était arrivé au système. Pour la toute première fois, ils furent en mesure d'établir un lien étroit entre les inclinaisons observées et l'effet théorique du déchirement de disque, suggérant ainsi que les attractions gravitationnelles conflictuelles exercées par les étoiles du système sur différents plans sont capables de déformer et de déchirer leurs disques.

Leurs simulations ont montré que l'inclinaison des orbites des trois étoiles pouvait causer la brisure, en anneaux distincts, du disque qui les entoure, confirmant ainsi les données d'observation. La forme constatée de l'anneau interne est également en accord avec les résultats des simulations numériques portant sur la brisure de l'anneau.

Il est intéressant de noter qu'une autre équipe ayant étudié le même système au moyen d'ALMA a introduit une variable supplémentaire dans son équation permettant de résoudre le système. “Nous pensons que la présence d'une planète entre les anneaux est requise pour comprendre les raisons du déchirement de l'anneau” précise Jiaqing Bi de l'université de Victoria au Canada, auteur principal d'une étude de GW Orionis publiée au sein des Astrophysical Journal Letters du mois de mai dernier. Son équipe a identifié trois anneaux de poussière dans les données d'ALMA, le plus extérieur d'entre eux étant le plus plus grand jamais observé au sein de disques protoplanetaires.

De futures observations menées au moyen de l'ELT de l'ESO et d'autres télescopes devraient aider les astronomes à mieux comprendre la nature de GW Orionis et à découvrir l'existence de jeunes planètes en formation autour de ses trois étoiles.
Page générée en 0.207 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise